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On the basis of the Laplace transform method, an asymptotic method is proposed for ex- 
posing the location and intensity of frontal discontinuities of the solution of a tinear se- 
cond order one-dimensional hyperbolic equation or system of such equations in problems 
for which the right side of the equation or system has the character of a pressure wave 
being propagated with decreasing velocity exceeding, at some initial state of the motion, 

the velocity of wave propagation described by an appropriate homogeneous equation or 
system of homogeneous equations. At the beginning, the method is elucidated with an 

example of a second order equation (plane strain of a membrane), and is then generalised 
for a system of sixth order equations which describes plane and axisymmetric strain wave 

processes in elastic shells to the accuracy of a Timoshenko-type theory. The method 
does not take into account the reverse influence of strain on the wave. 

Just as in the foundation work of Alumiae [l] devoted to the particular case of a spher- 
ical shell subjected to a plane pressure wave, the proposed method utilizes the fact that 
transverse sections in which the decreasing velocity of the pressure wave becomes equal 

to the velocity (or one of the velocities) of strain wave propagation, are saddle points for 
the integrals to be evaluated in the Laplace transform space. The asymptotic of the type 
in Cl] is based sufficiently far from the transverse sections defining the saddle points ; 
the proposed asymptotic, however, is intended primarily for the neighborhood of these 
transverse sections, and simultaneously yields acceptable results sufficiently far away. 
There exist particular cases for which the proposed method yields an exact solution for 
the whole wave process. 

The proposed asymptotic formulas have a structure convenient for the construction of 

particular solutions transposing the strongest discontinuities of the solution, where the 
remaining part of the solution can be found numerically by a mesh method just as strain 

wave processes of slabs and shells subjected to edge loading have been studied in [Z- 51. 

Asymptotic formulas of the type in [1] are not suitable for this purpose. 

1. Asymptotic method and its application In the one-dimen- 
Blonrl wave equation case, Let the prime denote differentiation with respect 
to the dimensionless coordinate E and the dot - with respect to the dimensionless time 
Z. Let us consider the elucidation of the location and intensity of discontinuities in the 
solution of the equation 

U” - U” = q (1.1) 

under the following side conditions: 

a) zero initial conditions are given for ‘C = 0 ; 
b) a boundary condition or a symmetry condition is given for E = 0 , and the 

condition u -+ 0 for E -+ 00. 

c) the function q (g, T) is symmetric relative to the point -E = 0, and is a pres- 
sure-wave type effect whose front (Fig. 1) is given by the equation 

‘G = P (8 (4.2) 
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where p (k) satisfies the conditions 

(1 for 0<4<41, 

P(O) = 0, P’ (E) = 1 for f =41, 
I 

P” (E) > 0 (1.3) 

>I for 4>Er. 

By virtue of the mentioned conditions it is sufficient to limit the analysis to the 

domain E > 0. 
The formulated mathematical problem can be inter- 

preted physically as a problem to analyze the plane 
wave process of membrane strain under the effect of 

a pressure wave or as the problem formulated for a 

rod in an appropriate way. 
Let us define the Laplace transform by means of the 

formulas 

F (E., S) = ij (E, z) e-s’& 
,I 

Ct+iCO 

Fig. 1 
Utilizing condition (a), we obtain from (1.1) 

u” _ $TJ = Q (1.5) 
We seek the solution of this equation as 

U = i Ajehi” + i, DjJ, (Al = -S, hs = s) (1.6) 
j=l j=I 

Jj(E) = eaj’Ij (E), lj (E) = 5 e-V Q (5) dz (1 l 7) 
0 

The first sum in (1.6) represents the general solution of the homogeneous equation 
(1. 5), and the second sum is the particular solution of the inhomogeneous equation( 1.5). 

Substituting the particular solution, and taking account of the differentiation formulas 

Jj’ = h,J, + Qt J,” = hj2Jj +3LjQ + Q’ (1.8) 
we have 

&=-Ds=-& 

Utilizing the second of conditions (b). we obtain 

As’(s) = -4 (41s (oo) 

(1.9) 

(1.10) 

Let us examine the calculation of A, (s) in two cases of the first of conditions (b). 
Problem 1. Let u (0, T) = 0, then U (0, S) = 0, from which follows 

-Al(s) = A2 (s) = - -&4 (1.11) 

Problem 2. Let ~‘(0, z) = 0, then ur (0, s) = 0, from which follows 

Al(s) = As(s) = - $18 (w) (1.12) 

To elucidate the location and intensity of the discontinuities I.4 let us seek the asymp- 
totic approximation of U for S --t 00. As the first step, let us calculate the asymptotic 
values of the integrals $1, (E) as S-k 00 . We hence assume that Q has the structure 
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Q = s-‘/on G (&-WE) (n = 2, 3, 4, . . .) (1.13) 
and we formally extend G (%), p (%) y s mmetrically in the domain % < 0 so that 

G (--%I = G (%I, P (-8 = P (El (1.14) 
Let us represent the integrals 11 (%) as 

(pj(%)=PfE)+E@-l+L’>O (1.15) 
0 

Were the constant b is selected so that the condition 

cpl (Es> = (i (identically for j=1,2) (l.16) 
would be satisfied. 

The quantities %I = - %s, %I > 0 are here defined from the conditions 

so that rp$’ (%J = 0 (i= I,21 (1.17) 

% = %I, if p’ (%) = 1; % = %s, if p’ (Q = -1 (1.18) 

The exponential integrands in (1.15) have a stationary value at the saddle points 
% = %$, respectively. Hence, to evaluate the If (%I as s -+ 00 it is natural to utilize 
partially the idea of the method of steepest descent. 

Let us represent the integrals (1.15) as the sum of two integrals over intervals contain- 
ing the saddle point when the saddle point is outside the domain of integration, and let 
us introduce the new integration variable 

2 = 2 (z) = )/SVPj (4 sign (z - %j) (1.19) 
when j= 1, f= 2, respectively ; then it is easy to give a foundation for the follow- 
ing formula : M-1 m 

ii (0 _ @ns- 7 

1 

G (5) t?-z’ h 

t ,,o/~ 
(i=t, 2) (1.20) 

The radicals are here taken with a plus sign 

‘Pi f”) = P (O) + b = b (1.21) 

Utilizing the idea of the method of steepest descent in the integrand of (1.20), we 
assume 

G (E) = G (Ej) 

(yrrpi (%)I’ = (Vcpj (Ej) + (E - %j) R’ (%9 + l/2 fE - Ed2 cpi%i))’ = i/s?2P” (53 

We hence have 

Ij(%)==:N(QIIVF~sign(%-%j)l +Q,GSign(%j)I} 

where CD (z) is the probability integral and 

N = &Jeb~s-‘/z(n+r) 1 M = G (Ed I%~ /P” (Ed 
Taking into account the relationships 

1 - CD (z) = erfc (s), erfc (-2) = 2 - erfc (2) 

we represent (1.23) in the expandedform 

I~(%)= N {erfc[Yi_qt(%)] ---dfjfi811 for o<% <%I 
I,(%)= N {Z --eerfc[~scpI(%)l -erfciy’sl} for 5 > E1 
I, (%) z N [erfc [1/a] - erfc [I/scps @I} for 0 < E 

(l.22) 

(1.23) 

(1.24) 

(I .25) 
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To the same accuracy as the calculations in (1.11) and (1.12) 

1s (oo) z Nerfc [ vi51 WV 
Taking the above into account, we have the following transform solutions for Problems 

1 and 2 : 
u = 1/8j/fS-‘Mn+w (2Te-SEE (sb) - e-sp(4) [E (scpl) + E (scp,)]} for 4 5% (1.27) 

u = 1~,~s-“~(R+2){ 2Te-*tE pb) + PP(Q [E (scpl) --E(sc~,)] - 2s-1~~db-E@} for 4 > 41 

E (sy) = s~‘h?~ erfc (I/$) 

Here T = 1 in the case of Problem l.and T = 0 for the case of Problem 2. 

The following inversion formulas as known [S]: 

e-SYE (sy) --_, H (.t - T) 

Vn(~+Y-Tr) 
(1.28) 

s-1/J(m+3)&-4) _+ r (z - E + b)“t(m+l)H (t - E + b, (1.29) 

s-‘/dm+ @e-syE (sy) 

r= 
v/z (m + 1111 

for m = 1, 3, 5, . . . 

r= 
(m;;fI’rr :vF 

- . for m+2=0,2,4,.. . 

which allow finding discontinuities of the desired solution by means of the asymptotic 

formulas of (1.27) as S 3 00 . 
N o t e 1.1. In the general case (1.23)-(1.27) are approximate because of (1.22). 

However, if G (E) = const , and p (5) is a quadratic polynomial, they will then be exact, 
Note 1.2. If G (E) andp (&are such rhat simplifications of (1.22) become roughly 

approximate in domains 1 E - %I 1% 1, then it may turn out to be expedient to use the 
following standard formulas of the method of steepest descent in the domains mentioned 

C7] : 11 (%I = s1 (E) for 0 < E < %I 

I1 (E) = 81 (5) + 1/2WP” (El) :G (41) ebss-l”(n+l) for 4 > 51 (1.31) 

1, (%I = 8‘2. (%I for O<% 

sj = c (0) G (4) 
P’(O) +t- Id -P’(s) + (- iI 

pW+(-d El ,-‘/&+a) 
I 

(1.32) 

Similar formulas have been utilized in 111. Besides (1.31) and (1.32) not being appli- 
cable in the neighborhood of the point E = &, their disadvantage is that they are prac- 
tically inapplicable for extraction of the particular solution transposing the fundamental 
discontinuities of the solution because the second member in S, will be infinite at 5 = fi. 

9, Numerical example8 for the caaa admitting an exact aolu- 

t lo n. Let us consider the case Q (% r) = H (.t _ k,%Z) 9 (2.1) 

for which G (5) = 1, p (E) = koga in the notation of Sect. 1. and (1.27) is the exact 
transform of the solution of Problems 1, 2. Hence 
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M 
1 Jfz 

z-7 

2 Vb’ :n=2, b=-&, 

Utilizing (1.28)-(1.30) we obtain the exact solution 

Here II (‘F) is the Heaviside function, and T = 1 in the case of the boundary condition 
u (0,~) = 0 (Problem l), and T - 0 in the case of the boundary condition ~‘~(0, z) =’ 0 

(Problem 2). 
Differentiation of (2.2) with respect to T easily yields formulas for the dimensionless 

velocity and acceleration 

1 + 2H(~-~)]--r;/‘)+~]H[r--((E)1 (2.3) 

(24) 

Numerical results for the case k0 = i are presented in Figs. 2 - 4, in which the dashed 
lines correspond to Problem 1, and the solid lines to Problem 2. Equilevel lines u are 

2 

f 

0 
2 

Fig. 2 Fig. 3 
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shown in Fig. 2. and equilevel lines u’ in Fig. 3. Shown in Fig. 4 is the change in U” with 
respect to E for z = 2.5, In the domain between the fronts rl = 0 and z = E the values 

of u’ and u” for Problems 1 and 2 agree. 
Let us comment on u*’ and the fronts: 

on the front z = $, we have u” = - T; 

on the front t = p (E) the amplitude of 
U” increases from u”(0) = - 1 to 
U” (1/2k,) = =m for 0 ( E < i / 2&, 
and decreases rapidly from the initial 
value u*“(i/2ko) = - c~ for E > 1/2ko; 
we have U” = - 30 on the front z1 = 0 

starting with the point E = 1/2ko. 

Fig. 4 
Using the approximate formulas 

(1.31) we obtain the normal disconti- 

nuities on the fronts ‘c= E and zl=O. However, on the front r=P (E) the results approxi- 
mate the normal only for 1 E - h 1 >> 1. 

The proposed asymptotic method can be generalized to a hyperbolic system of equa- 

tions with constant coefficients if the roots of the characteristic equation decompose 
into a pair of different sign. Let us show that it also occurs in the case of shell theory 
equations having sufficiently slowly changing coefficients. 

3. Generalization of the method to a hyperbolic ryatem of 
equations of axiaymmetric and plane #train of Ihell:. On the basis 
of Timoshenko-type theory, let us consider the axisymmetric and plane wave strain pro- 
cesses of shells of constant thickness 2h. Let a %, VJ coordinate system with Lam6 
parameters A = h, B = B (E) be selected on the middle surface of the shell. Let fir, 

As denote the radii of curvature of the middle surface, and let us introduce a dimension- 

less time by means of the formula z = tc,/h, where t is the time, cs the velocity of 
shear wave propagation in elasticity theory. 

Let us consider strain processes dependent on E, T. Let u, w be dimensionless (divi- 

ded by h) displacements in the direction of the coordinate E and normal to the middle 
surface, respectively, $ the angle of rotation of the normal, /c,~ the shear coefficient, 

Y’ Poisson’s ratio, Q,, (6,~) the dimensionless normal pressure. Let us introduce the fol- 
lowing notation k2 = (1 - v) / 2, A- = k2k,2 (3.4) 

(3.2) 

Let the primes denote derivatives with respect to E , and dots with respect to ‘G , 

Let us take the following modification of equations of a Timoshenko-type theory as 

*) At the end of the section it will be explained in what sense it is sufficient to take the 
simplified system (3.3) as the initial system. 
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Pd-Kjq’+ $$j- K~~“-KK.w”+P~aw+kaw”=~” 

Depending on the choice of coordinates (3.3) permits description of axisymmetric or 
plane wave processes of shell deformation. In the particular case of a slab RI = R, = 
= 00, P = 0 and, therefore, the first equation determines u separately(symmetric 

strain), and the system of the second and third equations determines $J and W (bending 
strain). 

In the domain E > 0 let us investigate discontinuities in the wave solution of the 
system (3.3). constructed under the following side conditions : 

a) zero initial conditions are given for 7 = 0 ; 
b) for E = 0 three homogeneous boundary conditions or symmetry conditions are 

given, and at infinity the conditions 

u (E, T) * 0, Ip (E, 7) -+ 0, w (E. ‘6)--t 0, for c-+ 00 (3.4) 
c) the function q,, (E, r) is an effect of pressure-wave type whose front is given 

by (1.2). where p (E) satisfies conditions (1. 3) with the sole difference that as g grows 
we demand a smooth increase in p’ (E) f rom the value p’ (0) < k to a value exceed- 
ing the quantity 1/k,. 

Taking (a) into account, let us take the Laplace transform (1.4) of the system (3.3)by 
denoting the transforms of U, 4, W, qo by U, Y’, W, Q. , respectively. Now if we 
introduce the new functions 

v, = uI/Bc, vs = YJm, v, = wp, Q = QoVg (3.5) 

we obtain the following system of ordinary differential equations 

VI” - [3B,2 + (1 - 2v)B,j+ k2s21VI + P (V,’ - B,V,) = 0 (3.6) 

W2” - 1/3 [3B12 + (1 - 2v)B, + k2s2 + 3KlV2 - K (V,’ - B,V,) = 0 

P(V,’ - B,VI) - K (V,’ + B,V,) - K IV,” - (-B12 + B, + P12K-l + 
+ k2s2K-‘)VJ = Q 

B, =B”/2B, B, =B”/2B (3.7) 

Let us consider the construction of the asymptotic solution of the system (3.6) as 
S + 00 , where the original determines the discontinuity of the solution of the original 

system (3.3). We hence assume that the following simplifying conditions are satisfied 
in the shell domain under consideration: 

i)B#O 

2) 1 se,“, fi2 > Br2, 1 B,I, h2 1 3R12, ha / 3R,= 

3) The radii of curvature R1, R2 are either constant or slowly changing functions 
of E, so that it is sufficient to consider RI, R, as constants in constructing the correcting 
elements of the main terms of the asymptotic solution as s + 00. If the estimate 

f$, >gP’JP, EP”/P2, P’JP2 is introduced this condition is satisfied for 6s<1. In the 
case 6a - 1 the correcting elements to the principal terms of the asymptotic solution 
containingp have the character of the estimate. 

Let us seek the Vi as 
Vi = IriO + Vi, (i=l, 2,3) (3.8) 

where l’io is the asymptotic general solution of the homogeneous system (3.6) and vi1 
is the asymptotic particular solution of the inhomogeneous system (3.6). 
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Direct substitution in the homogeneous system (3.6) with the mentioned assumptions 
taken into account, easily verifies that the functions v,, can be selected in the form 

Via = i A,Cije”j’ (i = 1, 2, 3) (3.9) 
j=l 

Here hj _(S) is in a second approximation 

AI=- ks-g, hB=-ks+ 2(K;iKi)ks ) 
(3.10) 

~3_=__+ 3Kk, 

l 
2(K-1)s 

h4 = Al, h, = -)L2, h6 = -Ah, (3.11) 

The coefficients Al (s) should satisfy conditions (b), and the Cij are determined in 
a first approximation as 

c,, = 1, G, = p, C,, = P / ks 

c,, = -P / 3, C,, = 1, C,, = K/(K - 1) ks (3.12) 

C1, = -k,P// (K - l)s, C,, = 3k,K/(K - l)s, c,, = 1 

cl,j+3 = cIj9 c2.j+3 = c2j7 C3rj+3 = --C3j (i = 1, 2, 3) (3.13) 

The coefficients of powers of a having the order of unity in (3. lo), (3.12) have been 
constructed with an error on the order of e2 , and the coefficients having the order P or 

P2 are roughly approximate for the variables B, R, and & .However, this fact does not 
introduce any essential error because of our assumption P & 6 < 1. 

N o t e 3.1. Let us consider the domain t > 0. To do this all members of the sum 

(3.9) are needed. If the origin of waves in the domain E >, 0 as a result of the edge effect 
at 4 = 0 is considered, then we have A4 = A5 = As = 0 from (3.4), and only the first 

three members of the sum (3.9) which contains coefficients allowing satisfaction of the 
three boundary conditions given at 4~ 0 can be taken into account. 

Utilizing the idea of the method of variation of constants, let us seek Vi, in the form 

Vi, = it DjC,jJj (i=l. 2,3) (3.14) 
j&l 

where the JI are defined by(l.7),and the Dj (S) are the desired coefficients. In differenti- 
ating V,, we shall, on the basis of the above-mentioned assumptions consider those ele- 

ments hj, Cij which contain Pas constants, and we shall utilize (1.8). 
Substituting Vi1 in the form (3.14) into (3.6) and differentiating, we easily see that 

in all three equations the coefficients of Jjvanish to the same accuracy as the individual 
members of the sum (3.9) satisfy the homogeneous system (3.6). By equating the coef- 
ficients of Q and Q’to zero in all three equations, we obtain a system of equations which 
can be reduced to the form 

i DjCii = 0, i DjhjC+j = (_;_I E i I’,’ 2 (i=l, 2, 3) (3.15) 
j=l. j=l 

Ifwetake Di +Di,:,Di-Dj+3 (i = i,2,3) as the new desired quantities, we 

easily establish that 

04 = D,, D, = D,, D6 = D, (3.i6) 

and we deduce the equatrons 
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Gil D1 + CgzDs + Ci, Ds = 0 (’ =I* 2) (3.17) 

C&q +G&pz +Gsw, = --$/2K 

for the evaluation of DI, Ds, Da. 
Utilizing (3. lo), (3.12), we easily construct the asymptotic solution of (3.17) for 

S --j. ?JCJ in the form 

01=-&C r>, = - 
38 

2 (K- 1) kV D, = & 
s (3.18) 

On the basis of the above, we have 

Vi = i, Cij [Aj + DJj (E)] e&j’ (i = 1, 2, 3) (3.19) 
j=l 

Here the 11 (g) are determined from (1.7). and the Aj (S) are still arbitrary coeffi- 

cients to be evaluated from condition (b). Using this latter in part of (3.4) we have 

AI = -DJ,(co) V=4, 5, 6) (3.20) 
Taking account of (3. ll), (3.13), this permits rewriting (3.19) as 

Vi = i C<j { [Aj + Djlj (611 ehj’+riRj[Ij+3(FJ - ~,+3(~lle+‘) 
j=l 

(rl=i, rp=l, r3=-1) (3.21) 

where Ax (s), A, (Q, At+(s) are coefficients determined from the conditions at % =O. 
Let us examine their evaluation in two cases. 

Problem 1. Given the conditions 

u (0, z) = 0, 1c, (0, 7) = 0, W (0, z> = 0 (3.22) 

from which follow the conditions ‘vi (0, s) = 0 allowing for the formation of a system 
of three equations in A,, d,, A 3 on the basis of (3.21). The asymptotic solution of 

this system as s -+ 00 is the following: 

Problem 2. Given the symmetry conditions 

u (0, z) = 0, 9 (0, a) = 0, Wf (0, z) = 0, B’ (0) = 0 (3.24) 

from which follow the conditions V, (0, s) = 0, V, (0, s) = 0, Vi (0, s) = 0 
allowing the formation of a system of three equations on the basis of (3.21) and (1,8). 

with the solution 
dJ = Djlj,r too) (i = C&3) (3.25) 

Fu~hermore, let T = 1 for Problem 1. and if = 0 for Problem 2. Then, on the basis 
of the above, single expanded formulas of the asymptotic transforms of the solutions as 
s --t 00 can be constructed for these problems 

u = P&s (--(K - 1) [I, too) - 2Tf, (cm) +I1 (i$Jle%"-+ 

4 (K - 1) [I* (-1 - 1, (E)le+ + R [Is(~) - 2TIb(m) + 12(E)]eXzE - 
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-- ~[~,(4 -- 15 (E)le-~ze - I(1 - 2T)l,(oo) 
+ [JB(~~J) - 1&)b+E} 

+ I3 @I @SE + 

y = Qs{ --P2 (K - 1) [I, (00) + I, (E)]ehl”- + px (K - 1) [I, (m) - (3.26) 
- I, (E) le+E - 3K [I, (00) - 2TIfj (cm) + Iz(Q]eht’ + 

+ 3K 115 k+- 1,(E)l e+E + 3K[(l - 2T)I, (co) + I, (Q]eha - 

- 3K [Is(m) - I6 (EJ]e+‘} 

w = 61{ -P2 (K - 1)” [I4 (m) + I, (E)lehlE - P2(K - 1)2 [I, (CO) - 

- I4 (E)le-hlE - 3K2 t15(m) + 12(E)lea~E - 31(‘[I,(co) - I&)] e-a24 + 

-I- T [2P2dK - 1)21, (m) + 6K21,(m)ex~~ I} + e{ [(i - ~T)I,,(co) + 

+ IQ(E)leh~4 + [I, (m) - I&)le-h3E} 

61-1 = 2(K - l)qGkV, lY2-1 = 2(K - 1) 1/B/w, 0 = k, / 2KJfBs 

For Problem 2 formulas (3.26) have been obtained on the basis of (3. 5), (3.12), (3.18), 
(3.21), (3.25) without any simplification, and for Problem 1, on the basis of (3. 5), (3.10). 
(3.12), (3.18) (3.21) (3.23) with only the factor containing the highest power of s being 
retained in each lj (E) and Ij (w) (i = 1, 2, . . ., 6) and with the admission of an error 

in the coefficients on the order of P2. It is easy to verify that the transforms (3.26) satisf! 

the boundary conditions and conditions (3.4) exactly. However, they satisfy (3.6) in the 
asymptotic sense as s + XJ with an error in the coefficients on the order of W. 

Inversion of the transforms (3.26) can be performed with different accuracy. However, 
we limit ourselves herein to the application of the method proposed in Sect. 1. 

Let us introduce the notation 
Sl = ks, sg=sfk* (3.27) 

Then upon using (3.10) in a first approximation (3.28) 

h 172 
= h,(l) = -s,, h,,, = h,(l) = q, A3 = k,(3) = -s3, h, = h2(3) = ss 

To the accuracy of (3.28) 

I1,2 = Ii(‘), I,,, = 12(*), I, = 11(3), 16 = 12(3) (3.29) 

where Tj\r) (E) (j = 1,2; 1 = 1,3) are determined by (1.7) for Ii (E) (j = 1,2) 
by selecting Al(l) (1 = I ,3), respectively in place of kj . 

Using (3.27), (3.29), and admitting an error of orderPs in the coefficients, we obtain 

the following simplified formulas from (3.26) : 

u = UP) + U(3), y = Y(1) + yt35 w = W(l) + &w, (3.30) 

u(l) = p 
2(K-i) l/zsl 

-2Fl 3 
y-(l) = - 3K -s-z 

Z(K-1) 1/B 
I FI (l= 1, 3) (3.31) 

Fl = [II(l) (E) + I,(l) (00) - 2271,(3) (co)]e-81~ + [I,(0 (g,) _ 1,(i) (m)]e~,~ 

J’s = -[II(~) (E) + (1 - 2T)12(3)(oo)]e-“~~ - [12(3) (E) - 12(3) (cm)]& (3.32) 

f/p) = - 3K2 

2(K-l)2v/B 
sa-s { [ Ip (E) + 12(1) (cm)] cst5 - 

- [la(‘) (EJ - I2(L) ( CXI)] es’: - 2T1,“’ (co) e+“-} 
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w(3) = i 
w s3-l{ lL(3) (E) + (1 
2K J/B 

- 27’) IL3) (co)] e-” - (3.33) 

- [Ia(3) (F;) - 1sC3) (co)] esrE} 

As in Sect. 1, we assume that Q has the structure of (1.13). Now if we introduce the 

notation 
Pl (E) = P (E) / k, Ps (E) = P (8k. (3.34) 

then (1.15)-(1.26) can be used to evaluate the lj”’ (E) (j,= 1,x; 1 = 1,s) in (3.22), 

(3.33) by replacing the quantities 

I,, qj, J+j> Ej, S, Pt by Jf, NY G (Ej) 

respectively, by quantities 

Ij(l), cpj (I), h+‘), &(‘), sI, pl, b(‘), AI(‘), N(l), G (&‘“‘) 

For two different values of the superscript I different pairs (j = 1,s) of saddle points 
E = &(‘) will substantially be applied. 

Thus, representing Ij(‘) (j = 1,2; 1 = 1,s) in (3.32). (3.33) as formulas of type 

(1.25). we obtain for expressions for u, Y, w from (3.30) which may be inverted by 

applying (1.28)-( 1.30) for specifically given n = 2, 3, d,... The following circum- 
stance should hence be kept in mind. Firstly, in conformity with (3.5), Q = Q,v/B 

in (1.13). Secondly, when s is replaced by Sl in the left sides of (1.28)-(1.30), the Z 

should be replaced on the right side by &, where 

~(~1 = 7 / k, d3) = ‘tk, 
and the factors l/k and k,inserted. respectively. 

Note 3.2. There is a factor sl- in (3.30) for U(“, Y(l) (I = 1, 3) , hence formulas 
(3.33) for W(I), Wc3’ correspondingly contain the factors slM3 and sQ-l. Therefore, inde- 
pendently of the specific nature of the pressure wave, the discontinuity corresponding to 
Wf3’ is most essential. Let us call this discontinuity provisionally a first order discon- 
tinuity. Then U(‘), Y(l) (1 = 1, 3) define the second order discontinuities, and W(l) the 

third order discontinuity. Here ti ,(lj, y'l), Tf,#) d e me the discontinuities in u, $, w on f 

fronts being propagated with the dimensionless velocity l/k, and U@), Yt3), Wc3i on 
fronts being propagated with the dimensionless velocity k,. The discontinuities on the 

front F = p (& are determined by the total contribution of UC’), Y(l), W“ (1 = 1, 3) 

where the contribution of the components E = 1 will dominate in the neighborhood of 
the point 5 = El(‘) , and the contributions of the components 1 = 3 in the neighborhood 
of the point E = &t3). 

The simplified system (3.3) was taken as the original system above to shorten the 
exposition. 

Let us now assume that a more exact system of equations of motion of a Timoshenko- 

type theory is derived from the standard equilibrium equations in stress resultants, mo- 

ments, and transverse forces by the following means: (a) the stress resultants and moments 
are expressed in terms of displacements by using the simplest Novozhilov-Balabukh 
elasticity relationships ; (b) the transverse force is given as 2hEIC (1 -~*)-1 (9 - u h/ 
/RI + w’) , (c) inertial terms are introduced without taking account of the change in 
metric in the shell thickness. 

It turns out that the asymptotic solution as s + CO of the appropriate Laplace trans- 
formed system of equations agrees with (3.26) in the part of the element W having the 
factor 0 and differs from (3.26) most substantially only in corrections on the order of 
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h/RI, h/R2 (as compared with unity) to the coefficients of elements in (3.26) having a 
factor of order ?. 

4, Simplified method of conrtruction of the r:ymptotfc :olu- 
tion of the trrnaformed rho11 equation:. The system (3.6) has specific 
properties allowing the construction of its asymptotic solution (3.30)-(3.33) as s -, 00 
by a simpler method than the general method described in the preceding section. 

Using the notation (3.27). we introduce into the considerations a simplified system 
(3.6) in the form 

L1IJ1 = - PV,‘, Liv, = 3h’T/,‘, K-‘PVl’ - V,’ - L3V3 = - Q” (4.1) 
a2 

Lp?@-+ (1==1,3), p=-+g (4.2) 

On the basis of (4. l), an asymptotic solution of (3.30)-(3.33) of the original system 
(3.6) as s --, 00 can be constructed for Problems 1 and 2 by means of the following steps. 

1) By integrating the equation Ld73 = Q* 

(4.3) 

which does not differ substantially from (1. l), taking account of the condition V, (0, s)= 

= 0 in the case of Problem 1 or the condition 1’3’(0, s) = 0 in the case of Problem 2, we 
obtain W @)JfF as solution. 

2) By constructing the solution of the first two equations of the system (4. l), using 
their now known right sides and taking account of the boundary conditions V, (0, S) = 6: 

Ii, (0, s) = 0 and the conditions at infinity, we obtain U 1/Fand Y JfE 

3) By constructing a particular solution of the equation 

L3V3 = ZrlPV~’ - V,’ (4.4) 

a formula for W”‘J@ with error on the order of Pa can now be obtained by using the 
known Vi and V,. 

The method mentioned remains valid for a broad class of other boundary conditions. 
It will also be effective in the investigation of discontinuities taking account of the 

influence of the surrounding medium, because only (4.3) supplemented by a term taking 

account of the influence of the medium should be integrated in combination with the 
equation of the medium. 
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After Tsien [I], Hayes @] and Il’iushin [S] had established the analogy between hyper- 

sonic flow past slender bodies,and unsteady flows in a space with one fewer dimensions, 
many researchers sought to establish which steady flow corresponds to the motion of a 

gas produced by an intense explosion. The authors of the earliest studies [4- 81 assumed 
that the gas particles in an explosion of a flat or filament charge move in the same way 

as in flow near a’blunt plate or semi-infinite cylinder at a zero angle of attack relative 
to the free stream. The thickness of the stIeamlined bodies were assumed to be infinites- 
imal; the bluntness of their leading edges was taken to be the direct analog of the action 
of a concentrated force on the ambient medium. The resulting analogy made it possible 

to isolate the most salient common features of the two effects, but suffered from one 
drawback: the density at the plate and cylinder surfaces turned out to equal zero, and 
the entropy to be infinite. 

Cheng [9]. Sychev [lo, ll] and Yakura [12] subsequently developed the notion of a 
high-entropy layer whereby the thickness of streamlined bodies increases to infinity down- 
stream, while the entropy remains finite over the entire contour. They emphasized that 
flow in a high-entropy layer differs from that in the rest of space , and that the use 

of the hypothesis of plane cross sections to calculate this layer entails considerable errors. 
The results of Sychev [lo, 111 and Yakura [la] are thoroughly analyzed below. It is 

shown that these results are obtainable directly from the theory of intense explosions as 
developed by Sedov [13. 141 and Taylor [15]. This possibility means that the analogy 
between unsteady flows and hypersonic flow past slender bodies is valid in the first appro- 
ximation throughout the domain beyond the front of the bow shock wave. This includes 
the domain adjacent to the contour of the body. The contour itself can be determined 

simply by choosing an appropriate value of the entropy at the particle trajectory which 
generates it; the equation of the trajectory can be found by solving the explosion prob- 

lems in Lagrange variables [16]. 

1. We assume that the motion of the gas is axially symmetric. Our principal conclu- 
sions will be equally valid for plane-parallel flows, however. We denote the axes of the 
cylindrical coordinate system by z and F , directing the r-axis along the velocity vec- 

tor of the unperturbed stream. Following [lo-121. we shall consider the inverse problem, 
i.e. we shall prescribe the form of the shock wave r = F, (z), and determine the con- 
tour of the streamlined body in the course of solution. Using the explosion analogy to 


